
Extending  the  Representational  Power of Model- 
Based  Systems  using  Generalized  Timelines 

Russell  Knight,  Gregg  Rabideau,  Steve  Chien 
Jet Propulsion Laboratory 

California  Institute of Technology 
4800 Oak Grove Drive 
Pasadena, CA 91 109 

{ firstname.lastname}  @jpl.nasa.gov 

Keywords: Scheduling, Representation,  Planning, 
Resources,  Model  Based  Systems 

Abstract . .  

Current declarative systems  (i.e.,  model-based  systems) 
are limited to a small number  of  types  of  states  and 
resources that they  can represent (e.g.,  we  cannot  model 
orientation  with current systems).  Thus,  software  is 
usually  “hand-crafted” to meet the needs  of state 
validation-estimation-projection for real domains  where 
estimation  is  not sufficient. To meet this need,  we 
provide  an abstract formulation  of  capacitated  resource 
scheduling  in metric time that admits  a  straightforward 
procedural interface for easy  customization  meeting 
many  real-world  domain description requirements  while 
remaining in the same  complexity class as their simpler 
scheduling counterparts-NF”Comp1ete. 

1 Introduction 
Current declarative systems that model  states  and  resources 
have  been fairly successfd, yet many  domains lie out of the 
reach  of these systems  due to a  lack  of  representation 
sufficiency. Thus, software is usually  “hand-crafted” to 
meet the needs  of state and resource validation-estimation- 
projection.  Although existing systems are usually  sufficient 
to approximate resource and state usage,  in  many cases 
approximations are not sufficient due to the high  cost of 
“false positives” for some  domains.  For  example,  many 
NASA  missions are extremely  risk averse and  require  very 
small  margins of error.  Many  unique  systems require 
specialized representations (e.g.,  conductivity  ratings at 
various temperatures for conductors),  and the resources are 
not available to develop  a  declarative  system for each  new 
type of technology that we  need to model.  For these reasons, 
it  is not clear that the procedural  “customized”  aspect  of 
modeling real domains  will  ever  vanish. 

To address this dilemma,  we  provide  a  formulation  of 
generic validation-estimation-projection  modeling 

constraints  along  with the procedural interface to them. To 
achieve this formulation,  we  have  surveyed  many  real-world 
domains  and  characterized their similarities and differences. 
Given this formulation,  we  provide algorithms for reasoning 
in  a  generic  way  about state validation,  estimation  and 
projection. Our hope is that this formulation becomes 
somewhat  standard,  and  other researchers will extend  and 
improve  these  algorithms. 

2 Semantic  Decomposition 
Semantic  decomposition is a process that reduces a set of 
operators  and  operands for a  collection  of  domains to a 
common set of abstract operators  and operands. For 
example,  consider the domains  of  “summing  integers”  and 
“multiplying real numbers”.  Each  of these domains  consists 
of  operators  (+  and .) and  operands (integers and real 
numbers).  Now, the semantics  of the + operator with respect 
to integers is not the same as the semantics of the operator 
with  respect to real numbers. But, consider the relationship 
of the + operator  and the to their operands.  We see that 
they  have  certain  properties  in  common, e.g., commutativity 
(1+2 = 2+1, 1.1.2.1 =2.1.1.1), associativity (1+(2+3) = 
(1+2)+3, 1.1.(2.1.3.1) = (1.1.2.1).3.1), and identity (2+0 = 2, 
2.1.1 = 2.1). Thus,  we abstract away the semantic content 
and  keep the “relationship” content of the operators, 
operands,  and  some  operand values (e.g., the identity  value). 
Thus,  we  can  talk  about  abstract operators and  abstract 
operands  and  abstract values for operands. 

Extending our example,  we create an abstract operator 
M that we call merge, a set of abstract operands 0 and an 
abstract  operand value 060. This is useful in that we  can 
produce  a  system for reasoning about  both the addition of 
integers  and the multiplication of real numbers.  For 
example,  if  we  have  an  operand  value o from the set of all 
possible  operand  values 0, identity  is  expressed as oM0 = 
0. Of  course,  our goal is to model  domains  with  more 
operators  and  relationships  than these. 

mailto:jpl.nasa.gov


Note that this has strong ties to the  algebraic  concepts 
addressed by group theory, although  the  algebras  we 
produce  are  not  groups per se because  we  do  not  require  the 
inverse relationship to hold.  This  is  because  our  goal  is to 
model  constraint  systems,  and an inverse  relationship  would 
imply that certain  constraints exist that  relax  other 
constraink+a  relationship  that  does  not  hold  for the 
majority  of  the  domains  we  have  sampled. 

Semantic  decomposition in the context of validation- 
estimation-projection  consists  of 4 steps: 

1. Formulate  each  domain in terms  of a value  over 
time  and a set  of  constraints  on that value. 

2. Identify the operators  and  operands of the 
constraints. 

3. Identify the interactions  between  operators  and 
operands  implied by the constraints. 

4. Reformulate  commonalties as aspects of a generic 
validation-estimation-projection  (GVEP)  problem 
and  differences as aspects of a procedural 
representation. 

For  example,  we  have  applied  this  analysis to existing 
representational  systems.  After  all,  we ’ do  not  wish to 
diminish current representational  capabilities. In general, 
current declarative  reasoning  systems  are  capable  of 
modeling  three  domain  types (a domain  type is a domain 
that can  represent  many  domain  instances): 

1. Depletable  Resource - e.g., a battery that looses  its 
charge  when  used  and  requires  explicit 
replenishment.  Constraints  for this domain  are  the 
minimum  and  maximum  allowed  value  and  usage 
effects. 

2. Non-depeletable  Resource - e.g., a bucket  that 
looses  capacity  when  in  use  but  immediately  regains 
the capacity  when not in  use.  Constraints  for this 
domain  are the minimum  and  maximum  allowed 
value,  and  usage  requirements. ~ 

3. Discrete  Symbolic  State - e.g., a stoplight  that  is in 
a discrete state (red,  yellow, or green). Constraints 
for this domain  are  value  transition  constraints  (e.g., 
for a stoplight, a green state  must  be  followed  by 
another green state or a yellow state  but not a red 
state),  and  usage  requirements  (e.g.,  the  light  must 
be green), and  delta effects (e.g.,  an  ambulance 
causes the light to change to green by sending  it a 
radio signal). 

Now,  let  us  consider  the  similarities  and  differences 
between these domains  and  constraints..  The  first  step of 
semantic  decomposition  (with  respect to validation- 
estimation-projection)  is to divide  the  system in question 
into  values  over  time  and  constraints on those  values. In this 
case, the values  over  time  are  discrete  real  values  and 
arbitrary  symbols.  The  constraints  are  minimum  values, 
maximum  values,  default  values,  non-depletable  usage- 
requirement  constraints that occur  over a duration, 
depletable  usage-effect  constraints that occur  at a moment 

and  propagate  forward  in  time,  symbolic  transition 
constraints,  symbolic  constraints that absolutely  change a 
value  and  propagate  it  forward in time, and  symbolic 
equality  constraints that require the symbol to be  equivalent 
to the  constrained  value  over  an  interval. 

The  second  step  of  semantic  decomposition  is to 
identify  operators  and  operands  of the constraints  and 
values.  The sum operator  (e.g.,  usage  requirement 
constraint)  and  the  “less  than”  operator  (e.g.,  maximum 
value  constraint)  are  those  used for real values.  The  equality 
operator  (e.g.,  equality  constraint)  and  assignment  operator 
(e.g.,  delta  constraint)  are  those  used for symbols.  Operands 
are real values  and  symbols. 

The third step of semantic  decomposition is to identify 
the relationships  between the operands  and  operators.  Here 
we  see a similarity  between  states  and  resources.  Non- 
depletable  constraints affect the  value  over a specified 
temporal extent-so  do symbolic  equality  constraints. 
Depletable  constraints affect the value  from  now until the 
fkture-as do  symbolic  delta  constraints. 

The fourth step  is to reformulate the constraints  and 
values as a GVEP  problem. In essence, the relationships 
between  operands  and  operators, as well  as the similarity 
between  these  entities  are  what  define  the  GVEP  problem 
solver. In this  case,  we  see  the  requirement to propagate 
effects of constraints  forward in time (as for state delta  and 
depletable  resource  constraints), the requirement to reason 
about  constraints  whose effect is temporally  contained by an 
interval (as for  state  equality  and  non-depletable  resource 
constraints),  and  the  requirement to reason about  global 
constraints  (state  transition constraints and 
minimdmaximum value  resource  constraints). We note 
that global  constraints are instances  of  constraints  whose 
effect is  temporally  contained by  an interval; thus,  we 
combine  these  two  types of constraints. To interface to the 
GVEP  problem  solver,  we  must  provide the semantic 
description  of the relationships  between the operators  and 
operands  of the specific  domain to be modeled.  This is 
modeled  procedurally. 

A surprisingly  small  number of operators are sufficient 
to model a variable  over  time in the context of  our current 
semantic  decomposition  (for  depletable  and  non-depletable 
resources,  and  symbolic  states). In terms  of  operands,  we 
require a single  operand  type, 0. In terms of operators,  we 
require: 

1.  A merge  operator (xMy, XEO, ~ € 0 )  that is 
associative  and  commutative. We use this to merge 
operand  values  together. 

2. A value  propagation  operator (xDy, XEO, ~ € 0 )  
used  for  calculating the “down-stream”  effects of a 
value x on the value y given the context of the 
current  value y .  This  is  used to compute  values  after 
delta  constraints. 

3.  A consistency  checking  predicate  OK(x) that is 
used to validate that a particular  operand  value  is 
not  violating  any  constraints  associated  with  it. 



4. A  consistency  checking  predicate XOK(x9) that  is 
used to validate that a  transition  from the first 
operand value (x) to the second (y) is not a  violation 
of  any  constraints. 

We  have  demonstrated that these are the necessary  and 
sufficient  requirements  on the procedural  semantic 
description for our  GVEP  problem  solver to work for 
depletable and  non-depletable  resources,  and  symbolic 
states. 

These three domain  types  can  represent  surprisingly 
many specific domains.  Some  domains,  however,  lie outside 
the representational sufficiency  of these domain  types.  For 
example,  consider the problem  of  modeling  a  file  system. 
We  wish to model aspects such as total  memory  capacity, 
the requirement for the existence  of files, and the 
creatiodrnodificatioddeletion of  files.  A  depletable 
resource could  model  memory  use,  but  a  symbolic  state  is 
insufficient to model file existence requirements.  Normally, 
including such  a  new type of  domain  in  a  declarative  system 
would require custom  code for both the semantic 
representation  and the reasoning  algorithm-s.  Our  approach 
removes the requirement for custom  coding the reasoning 
algorithms  and  reduces the overhead  required to encode the 
semantic representation. Interestingly, we  find that the 
current semantic  decomposition suffices. 

3 GVEP 
We  address the following issues  with  respect to the GVEP 
problem  (we discuss the problem solver later): 

1 .  How  do  we project the effect  of  constraints  and the 
current state of the system  over  time  with  respect to 
future constraints? Likewise,  how do we  estimate 
future and current values without  actual 
measurements?  These  questions are answered  in the 
sections concerning  Evaluating the Assignments to 
the Operand  Values  over  Time, Effects on  Temporal 
Extent, Computing  Operand  Values,  and 
Consistency. * . I .  , 

2. How do we  validate that no  constraints are violated 
or, if constraints are violated,  how  do  we  identify 
the violated  constraints?  This  question  is  answered 
in the sections concerning  Consistency,  and the 
Problem  Solver. 

3. What algorithms can  we  use to introduce  more 
constraints without  causing  violations  or  to  remove 
constraints to alleviate  violations?' ! 

The  key to this approach  is that we  expect the semantics  of  a 
variable to be described by the user  or  a  developer,  and  we 
provide the reasoning  engine. Thus, with the definition  of  a 
few  functions,  a  developer  has all the power  of  a  complete, 
declarative  validation-estimation-projection  reasoning 
system. 

Another  key aspect of this approach is that we  model  a 
series of discrete operand  values  over  time. We call such  a 
series of  operand values a timeline. The  operand  value  is  a 

combination  of the actual projected value and the 
constraints  on the actual value.  For  example,  a  symbolic 
state might  be green from  time t to time t+l . (Note that 
times  need  not  be  grounded-they  might just as well be 
time-points  in  a  temporal  network representing flexibility, 
assuming that the time-points are ordered.)  If there were  a 
constraint that the symbolic state be green over the same 
time,  then  its  operand value would reflect both the actual 
value (it is green) and the value of the constraint (it  must  be 
green to be  valid). 

Evaluating the Assignments to the  Operand Values  over 
Time 
Given  a  procedural  semantic description of  a  domain,  and  a 
set of  instances  of constraints for the domain,  we  wish to 
represent the discrete  operand values implied  by the 
constraints  over  time.  In  other  words,  we  wish to compute 
the timeline.  What  follows is a description of exactly how 
the timeline is generated.  Given  a timeline, we  can 
determine  which  (if  any) constraints are violated and 
perform  other  reasoning tasks associated  with providing the 
functionality  of the GVEP  problem  solver. 

Consider  a series of  operand values V. Initially,  only  a 
single  operand  value v exists in V and it spans the entire 
timeline. v is  assigned  a  value  of 0, which  is  a  universal 
value for all variables.  With no other constraints on v, it 
would  remain  such.  A  constraint on a timeline represents a 
merge  operation  of the current value of the timeline and the 
value  of the constraint  over  a specified period  of  time or 
temporal  extent.  Note that this disallows default values,  but 
default  values are subsumed  under generic constraints since 
we  can  place  a  constraint at the very start of  a timeline. We 
model the timeline as a series of discrete temporal  segments 
that completely  cover the horizon yet do  not overlap. Note 
that the temporal divisions between  operand values over 
time  need not be  definite  assigned values but  could  be  time 
points  in  a  temporal  network,  making this system 
extendable to such current and  proposed  systems  as the 
Remote  Agent  and the Mission  Data  System. 

All  constraints  have  a start- and  end-time point. The 
temporal  extent  of  a constraint is its start-time inclusively up 
to its  end-time  non-inclusively.  Note that this is not 
necessarily the temporal extent of the effects of the 
constraint  because constraints also may  have  propagation 
properties.  Consider the timeline v in  Figure 1 with  two 
constraints that have  no  unusual effects. We see the 
timeline as a  series  of  operand  values  and the constraints as 
a  collection  of  operand values and  temporal  extents.  In this 
example, a and p represent specific operand  values. 

Constraints +p+ 

Timeline +a+ 
V time-b 

0 I a I a M a I P  I 0 

Operand Values 



Figure 1 Simple  generic  timeline 

Effects on Temporal  Extent 
We  define  one  more attribute of  a  constraint: its efect. The 
effect of  a constraint determines  any  special  consideration it 
should  be  given  in  terms  of its temporal extent. Currently, 
we  define  only  two  effects: 1) local and 2)  downstream. A 
constraint  with  a local effect only  influences  assignments  of 
the timeline it constrains within its temporal  extent, as in 
Figure 1. If the effect of  a  constraint  extends  beyond its 
defmed  temporal  extent,  we  say that its value affects the 
timeline  downstream.  Consider  Figure 2, which  is the same 
as Figure 1 except that its constraints'  effects are 
downstream. 

Constraints l-p-) 

Timeline +a+ 
V time-b 

0 I a I am I (DDU)M~ .I . ,  (DDU)D~ 

Operand Values 

Figure 2 Abstract  timeline with constraints of 
both  local  and  downstream  effect 

For  example,  consider  a  symbolic  state.  The  effect  of 
changing to a state (e.g., green) in the schedule  propagates 
forward  in  time until something  occurs to cause  another 
change  (e.g.,  an  ambulance or the mechanism of the traffic 
light). In this sense,  we  can  extend the temporal  extent  of  a 
constraint  by  endowing it with  a downstream effect. But, 
we  do not wish  downstream  values to always  propagate 
down the entire timeline, e.g., after a traffic light changes, 
the previous values have  no effect on the current  value. 
Similarly,  we  might receive updates  fiom  measuring 
equipment  (e.g.,  our eyes might tell us that the light is in 
fact red). Clearly,  we  do  not  want  previous  constraints' 
effects to propagate  beyond an absolute  measurement. 

It is important to note that more  effects are possible. 
Consider  a constraint that propagates  back  in  time  instead  of 
forward, or a constraint that causes no splits in  timeline 
segments,  i.e., it simply  merges  with the existing  segments, 
possibly  extending its temporal extent. These are feasible, 
but  not necessarily reasonable, and are not  'included  in  our 
discussion. 

Computing  Operand  Values 
To  compute the operand  values  of  a  generic  timeline,  we  use 
three timelines: the local timeline, the downstream  timeline, 
and the visible timeline. The  operand  values that make  up 
the visible  timeline are the result of  merging the operand 
values  of the local and  downstream  timeliaes:  Let us use 
the previous  example  in  Figure 2 but  now  show the internal 
workings  of the timelines  (Figure 3; keep  in  mind that 
x M 0  = x ) .  

dowstream 0 I 0 D a  +i> (0Da)DP I 
visible 0 I a I aMB I (0Da)Mp I (0Da)Dp 

indicate  value- 
assignment + + 

Operand  Values 

paths 

Figure 3 Internal  workings  of the timeline 
Here  we see that the downstream  assignments are a series of 
D operations  using the operand  value  of the constraint and 
applying it at the end  of the constraint.  We  use the function 
D to combine  values that are most recently contributing to 
the series with the preceding  operand value. We do this to 
provide  an  overloading  capability for the most recent 
information.  This  concludes  our discussion of timeline 
computation.  We  continue  with  a discussion on  operand 
value  consistency  validation. 

Consistency 
Checking  consistency  of  a timeline is a  two-phase 
operation: 1) check the consistency of each visible operand 
value  and 2)  check the consistency  of  each  transition.  Given 
OK and XOK, consistency  can  easily be validated in  time 
that is  proportional to the number  of  operand values in the 
visible  timeline for a  given  timeline.  The  number  of 
assignments for the timeline is proportional to the number 
of  constraints  constraining the timeline, so consistency 
checking for a  timeline  is  roughly proportional to the 
number  of  constraints  constraining the timeline. Of  course, 
one  could  implement  an  incremental  update to the 
consistency  status as one  updates values on the visible 
timeline.  Transitions  can  be validated using the same 
technique. 

File  System  Procedural  Semantic  Description  Example 
We  now explore our  example  in detail. We  wish to define a 
domain that models  a file system. Specifically, we  wish to 
represent  constraints  on the total amount  of  space  available, 
the amount  of  memory  used  by individual files,  and the 
requirement  of  file  availability.  We also need to model 
normal file operations  such as creation, modification, and 
deletion  with  respect to our earlier constraints.  We 
formulate  a file system as a GVEP problem  by providing a 
minimal set of  definitions. 

An operand  value v for this domain  would consist of the 

1.  A measurement  of the total space  (used or not) of 

2. A set of files  and  space allocations 
3. A set of  requirements that imply that a file must 

following: 

the system 

exist 



4. A set  of  pending  deletions 

1.  Total  space  would  be  infinity,  as  this  is  the  least 

2. An empty set of  files 
3. An empty set of  required  files 
4. An  empty set of  pending  deletions 

The  merge  operator M would  behave  thusly: 
1.  Take  the  minimum  of  the  total  space  values as the 

resultant  total  space  value. 
2. Take  the  summed  union  of  the  sets  of  files.  That  is, 

if  a  file  exists  in  both, it exists  in  the  resultant  set 
with  the  usage  being  the  sum  of  usages.  If  a  file 
exists  in  only  one  of  the  two  sets  of  files,  it  exists  in 
the  resultant set with  the  same  usage. 

3. Take  the  union  of  the  sets  of  required  files. 
4. Take the union  of  the  sets  of  pending  deletions. 

The  downstream  propagation  operator D would  behave 
thusly  (note  left-hand  operand  is previous, right-hand 
operand  is current): 

1. Take the minimum  of  the  total  space  values as the 
resultant  total  space  value. 

2. Remove  all  files  in  the  file  list .of the  previous 
operand that are  in  the  deletion  file  list  of  the 
previous  operand.  Take  the  summed.  union  of  this 
file set  with  the  current  file  set. 

The  identity  value 0 would  consist  of  the  following: 

constraining  value 

3. Take  the  union  of  the  sets  of  required  files. 
4. Use  the  current  deletion  file  set  only. 
The  operand  value  consistency-checking  predicate OK 

is  defined as such:  If  the sum  of all usages  of  files  of  the  file 
list  that  have no matching  file  in  the  deletion  list  is  greater 
than  the  total  space,  return  false.  Otherwise,  if  any  file  exists 
in  required  file  list  that  doesn’t  exist  in We file  list,  return 
false.  Otherwise,  everything  is  ok, so return  true. 

The  operand  transition  consistency-checking  predicate 
XOK always  returns true since  any  transition  is  allowed. 

These  examples  demonstrate  that  the  GVEP  timeline 
representation  is  sufficient  for  current  declarative  systems, 
as  well as domains  that  current  systems  cannot  represent. 
The  proposed  research  will  take  this  system  farther  than 
current  systems  and  provide  a  framework  upon  which  the 
procedural  description  of  a  domain  can  take  advantage  of  a 
declarative validation-estimation-projection system  with 
low  overhead. 

Problem Solver 
Until  now,  we  have  focused  on  representation. We have 
assumed  a  solver  in  the  background  that  given  the 
procedural  semantic  description  of  a  domain  can  solve 
validation-estimation-projection problems. We must  address 
the  details of the  algorithm  and,  therefore,  we  now  turn  our 
attention to the  issue  of  solving  specific  validation- 
estimation-projection  problems.  The  only  assumption  we 
make  about  the  procedural  semantic  description  of  a  domain 

is  that  the  asymptotic  space  and  time  complexity  of  each 
operand  value  scales at worst  linearly  with  the  number of 
operations  (merge  or  downstream  propagation)  performed 
on  it. 

Generic Constraint Validatio-we now turn  to 
validating  a  set  of  constraints  given  a  procedural  semantic 
description. By constraint,  we  mean  an object that  has  a start 
time  point,  an  end  time  point,  an  operand  value,  and an 
effect, as described  earlier.  The  time  points  are  associated to 
each  other  using simple temporal constraints [Dechter et  al., 
19911. These  are  usually  in  the  form  of  “time  point a must 
come  after  time  point b by at least 10 minutes  but  not  more 
than 15 minutes.”  The  question  we  would  like to answer  is 
this:  Is  there  any  assignment to the  time  points of the 
constraints  such  that  the  resulting  timeline  is  consistent  (as 
described  earlier  using OK and XOK)? Or,  conversely,  is  it 
true  that  any  assignment to the  time  points is ok?  As it turns 
out,  these  are  very  difficult  questions.  Considering  that  we 
wish to ask  about  validity  often,  we  must  make a 
compromise  on  the  types  of  validations  we  perform.  Our 
compromise  is  that  we  only  validate  collections  of 
constraints  that  have  time  points  that  are  totally  ordered  with 
respect to any  given  domain. 

More  formally,  generic  constraint  validation  is as 
follows: 
Generic  Constraint  Validation  (GCV) 
Given  a  simple  temporal  problem  [Dechter et  al., 19911 
G = ( V a ,  w(e&)+Z,  a set of  domains S, a  set  of 
constraints Cy c = ( @ € E ,  tp2eE, fe {local,  downstream}, 

QUESTION:  Is  there  a  legal  assignment to the  time  points 
such  that  the  constraints  are  not  violated? 

Of  course,  we  often  are  concerned  with  the  negation  of 
this.  That  is to say,  is  there  a  legal  assignment to the  time 
points  such  that  the  variable  constraints  are  violated?  One 
example  of  a  scheduler  (and  planner) that handles  this 
problem at its  most  general  level  (but  only  for  real  valued 
resources)  is  the  IxTet  system  [Laborie  and  Ghallab, 1995 
and  Vidal  and  Regnier, 19991. IxTet  uses  a  maximal  clique 
approach to discovering  if  a  resource  has  been  over- 
subscribed.  Unfortunately,  computing  a  maximal  clique  is 
NP-complete.  Thus,  we  wish to impose  certain  bounds  on 
the  types  of  problems that are  validated. If all time  points 
associated  with  a  variable  through  a  constraint  are  totally 
ordered,  then  validation  becomes  trivial  because  only  one 
series  of  values  for  a  variable  is  possible (albeit with 
varying  times  associated to the  divisions  between  the 
values). We adopt  this  approach to validation-that  is,  we 
assume  that  all  time  points  are  totally  ordered  with  respect 
to a  domain  before  validating  them  (checking  for  constraint 
violations  using  the OK and XOK predicates  for  each 
variable).  This  approach  is  similar to previous  approaches 
[Cesta  and  Smith, 1998 and  Muscettola et al. , 19981. 

Thus,  the  remaining  problem  is  this:  Given  a  collection 
of  constraints  on  a  domain  or  domains  related to each  other 
via  temporal  constraints  between  their  time  points,  is  there  a 

S€S)€C. 



way to force  a  total  ordering  among  constraints  of  common 
domains  such  that  the  resultant  timeline  is  consistent? We 
see  this  as  a  precedence  constraint  problem,,  where  the  idea 
is to introduce  temporal  constraints  that  impose  an  ordering 
on  the  time  points  of  the  domain  constraiqts.  This  technique 
is  referred  to as precedence  constraint  posting  and  has  been 
used  effectively  for  solving  scheduling  problems  [Cesta  and 
Smith,  19981. 
Generic  Constraint  Ordering  Problem  (GCOP) 
Given  a  simple  temporal  problem  [Dechter et al., 19911 
G = (V,E), w(eEE)+Z, a set of  variables S, a  set of 
constraints C, c = (tpl E E ,   t p p ~ E ,  fE  {local, downstream}, 

QUESTION: Is there  a  set  of  precedence  constraints P that 
can  be  added to the  existing  temporal  constraints  such  that  a 
total  ordering  is  imposed  on all points  associated  with  a 
common  variable s E S? A precedence  constraint  is  of  one 
of  two  forms: 1) time  point x strictly  precedes  time pointy 
by E where E is  an  arbitrarily  small  amount  of  time,  or 2) 
time  point x is  simultaneous to time  point  y.  In  the  latter 
case,  we  simply  collapse  time  points x and‘y to be  the  same 
time  point. 

To  apply  the  appropriate  algorithm to solve  this 
problem,  we  would  like to know just how difficult it is.  We 
have  proved  that  this  problem  is  NP-complete. 

Knowing  that  GCOP  is  NP-complete,  we  choose to 
apply  a  search  technique  that  has  many  favorable 
characteristics  for  NP-complete  problems:  Depth  First 
Branch  and  Bound  (DFBnB).  DFBnB  has  the  following 
traits:  It  can  return  a  solution  once  it  has  searched to depth 
(in this  case,  the  number  of  constraints  necessary to induce  a 
total  ordering),  thus  making  it  an  any-time  algorithm  with 
respect to the  GCOP. 

0 It  has  been  used  successfully  in  solving 
optimization  problems  faster  than  any  other  known 
technique  [Zhang, 20001. 

0 It  can  make  use  of  heuristic  information to aid  it  in 
finding  solutions  faster. 

SEs)€C. 

0 It  will  find  the  optimal  solution. 
0 It  will  terminate. 
The  first step in  applying  DFBnB to a  problem  is to 

define  the  search  space.  In  the  case of GCOP  we  are 
searching  the  space  of  precedence  constraint  assignments. 

The  next step in  applying  DFBnB  is to develop 
heuristics  for  estimating  the  cost  of  a  solution  given  our  cost 
and  solution  context.  The  development  of  heuristics  is  a 
major  area  of  research,  and  due to space  constraints we  omit 
such  a  discussion. It is  important to note  that  heuristics  must 
be  admissible  for  DFBnB to find  optimal  solutions. 

4 Future  Work 
There  is  an  obvious  underlying  planning  problem  that  deals 
with  issues  such as when to insert  new  constraints  and  what 
value to assign  them.  Future  work  should  address  these 
issues. 

5 Acknowledgements 
The  research  described  in  this  paper  was  carried  out  $the 
Jet  Propulsion  Laboratory,  California  Institute  of 
Technology,  under  a  contract  with  the  National  Aeronautics 
and  Space  Administration. 

References 
[Cesta  and  Smith,  19981  Oddi S. Cesta  and S. Smith. 

“Profile-Based  Algorithms to Solve  Multiple 
Capacitated  Metric  Scheduling  Problems.” Proc. 

[Dechter et al., 19911  R.  Dechter,  I.  Meiri,  and J. Pearl 
“Temporal  Constraint  Networks,” ArtiJicial 
Intelligence, 49,  1991,  pp.  61-95. 

[Fukunaga et al., 19971  A.  Fukunaga,  G.  Rabideau, S. 
Chien,  D.  Yan.  “Towards  an  Application  Framework 
for  Automated  Planning  and  Scheduling,” Proc. of  the 
1997 International  Symposium  on Artijkial 
Intelligence, Robotics and Automation for Space, 
Tokyo,  Japan,  July  1997. 

[Karp,  19721  R.  M. Karp. “Reducibility  among 
combinatorial  problems.” In R.  E.  Miller  and  J. W. 
Thatcher  (eds.) Complexity  of  Computer  Computations, 
Plenum  Press:  New  York,pp.  85-103,  1972. 

[Knight et al., 2OOOal R.  Knight, S. Chien,  T.  Starbird,  K. 
Gostelow,  and  R.  Keller.  “Integrating  Model-based 
Artificial  Intelligence  Planning  with  Procedural 
Elaboration  for  Onboard  Spacecraft  Autonomy.” 
SpaceOps 2000, Toulouse,  France,  June  2000. 

[Knight et al., 2000bl  R.  Knight, G .  Rabideau,  and S. Chien. 
“Computing  Valid  Intervals  for  Collections of 
Activities  with  Shared  States  and  Resources,” 
Proceedings  of  the Ftjih International  Conference  on 
Artificial Intelligence  Planning and Scheduling, 14-  17 

[Laborie  and  Ghallab,  19951  P.  Laborie  and M. Ghallab. 
“Planning  with  Sharable  Resource  Constraints,”  Proc. 

[Muscettola et al., 19981 N.  Muscettola,  P.  Nayak,  B.  Pell, 
and  B.  Williams.  “Remote  Agent:  To  Boldly  Go 
Where  No  AI  System Has Gone  Before,”  Artificial 
Intelligence  103(1-2):5-48,  August  1998. 

[Vidal  and  Regnier,  19991 T. Vidal  and P. Regnier.  “Total 
Order  Planning  Is  More  Efficient  Than  We  Thought.” 
Proceedings  of  the  Sicteenth  National  Conference  on 
Artificial Intelligence, AAAI  Press,  1999,  pp.  591-596. 

[Zhang,  20001 W. Zhang.  “Depth-First  Branch-and-Bound 
versus  Local  Search: A Case  Study.” Proceedings of 
the  Seventeenth  National  Conference  on ArtiJcial 
Intelligence, AAAI  Press,  2000,  pp.  930-935 

b: 

AIPS98, pp. 214-223,1998. 

April  2000,  pp.  339-346. 

IJCAI-95,~~. 1643-1649,  1995. 


